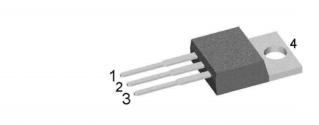
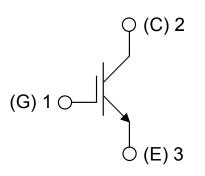
XPT IGBT


IXA20I1200PB

preliminary


V_{ces}	=	1200 V
_{C25}	=	38A
$V_{\text{CE(sat)}}$	=	1.8V

Single IGBT

Part number IXA20I1200PB

Backside: collector

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
- low EMI
- square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
 Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-220

- · Industry standard outline
- RoHS compliant • Epoxy meets UL 94V-0

LIXYS

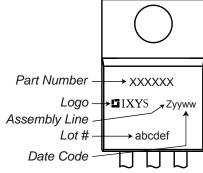
IXA20I1200PB

preliminary

IGBT						Ratings	;	
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{VJ} = 25^{\circ}C$			1200	V
V _{GES}	max. DC gate voltage						±20	V
V _{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_c = 25^{\circ}C$			38	A
I _{C 80}				$T_c = 80^{\circ}C$			22	A
Ptot	total power dissipation			$T_c = 25^{\circ}C$			165	W
V _{CE(sat)}	collector emitter saturation voltage		I _c = 15A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.8	2.1	V
				T _{vJ} = 125°C		2.1		V
V _{GE(th)}	gate emitter threshold voltage		I_{c} = 0.6mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
ICES	collector emitter leakage current		$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{vJ} = 25^{\circ}C$			0.1	mA
				T _{vJ} = 125°C		0.1		mA
I _{GES}	gate emitter leakage current		$V_{GE} = \pm 20 V$				500	nA
Q _{G(on)}	total gate charge		V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	15 A		47		nC
t _{d(on)}	turn-on delay time)				70		ns
t,	current rise time			T 10500		40		ns
t _{d(off)}	turn-off delay time	l	inductive load	T _{vJ} = 125°C		250		ns
t _f	current fall time	7	$V_{CE} = 600 \text{ V}; I_{C} = 15 \text{ A}$			100		ns
Eon	turn-on energy per pulse		V_{GE} = ±15 V; R_G = 56 Ω			1.65		mJ
E _{off}	turn-off energy per pulse	J				1.7		mJ
RBSOA	reverse bias safe operating area	٦	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 56 \Omega$	T _{vJ} = 125°C				
I _{CM}		ſ	V _{CEmax} = 1200 V				45	A
SCSOA	short circuit safe operating area	٦	V _{CEmax} = 900 V					
t _{sc}	short circuit duration	}	$V_{CE} = 900 V; V_{GE} = \pm 15 V$	T _{vJ} = 125°C			10	μs
l _{sc}	short circuit current	J	R_{G} = 56 Ω ; non-repetitive			60		А
R _{thJC}	thermal resistance junction to case						0.76	K/W
R _{thCH}	thermal resistance case to heatsink					0.50		K/W

IXYS reserves the right to change limits, conditions and dimensions.

20131024a



IXA20I1200PB

preliminary

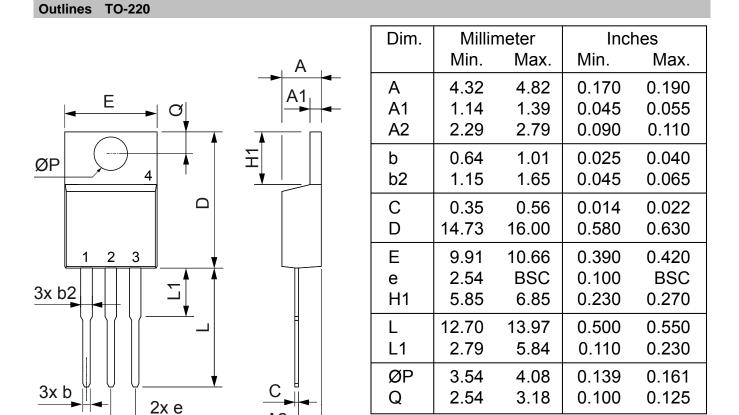
Package TO-220			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			35	Α
T _{vj}	virtual junction temperature		-40		150	°C
T _{op}	operation temperature		-40		125	°C
T _{stg}	storage temperature		-40		150	°C
Weight				2		g
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	Ν

Part number

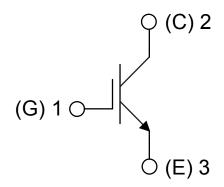
- X = XPT IGBT A = Gen 1 / std
- 20 = Current Rating [A]
- I = Single IGBT
- 1200 = Reverse Voltage [V] PB = TO-220AB (3)

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA20I1200PB	IXA20I1200PB	Tube	50	507929

Similar Part	Package	Voltage class
IXA20IF1200HB	TO-247AD (3)	1200


Equiva	lent Circuits for Simulation	* on die level	T _{vj} = 150 °C
	$-R_{o}$	IGBT	
V _{0 max}	threshold voltage	1.1	V
$R_{0 max}$	slope resistance *	86	mΩ

IXYS reserves the right to change limits, conditions and dimensions.


20131024a

IXA20I1200PB

preliminary

A2

IXYS reserves the right to change limits, conditions and dimensions.

20131024a

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.