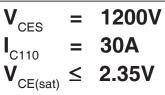
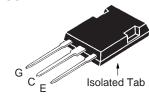


Advance Technical Information

IXGR55N120A3H1


GenX3[™] 1200V IGBT w/ Diode

(Electrically Isolated Tab)


Ultra-Low-Vsat PT IGBTs for up to 3kHz Switching

Symbol	Test Conditions	Maximum Ratings			
V _{ces}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	1200	V		
V _{CGR}	$T_{_J}$ = 25°C to 150°C, $R_{_{GE}}$ = 1M Ω	1200	V		
V _{ges}	Continuous	±20	V		
V _{GEM}	Transient	±30	V		
I _{C25}	$T_c = 25^{\circ}C$ (Chip Capability)	70	A		
I _{C110}	$T_{c} = 110^{\circ}C$	30	A		
I _{F110}	$T_c = 110^{\circ}C$	44	A		
I _{CM}	$T_c = 25^{\circ}C$, 1ms	330	А		
SSOA	$V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 3\Omega$	I _{CM} = 110	A		
(RBSOA)	Clamped Inductive Load	@ 0.8 • V _{CES}			
P _c	$T_c = 25^{\circ}C$	200	W		
Tj		-55 +150	°C		
Т _{јм}		150	°C		
T _{stg}		-55 +150	°C		
TL	Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10	300 260	⊃° ⊃°		
	1.0 mm (0.002 m.) nom Case for 10	200			
VISOL	50/60 Hz, 1 minute	2500	V~		
F _c	Mounting Force	20120/4.527	N/lb.		
Weight		5	g		

Symbol $(T_J = 25^{\circ}C,$	Chara Min.	acteristic Values Typ. Max.			
V _{GE(th)}	I_{c} = 1mA, $V_{ce} = V_{ge}$	3.0		5.0	V
	$V_{CE} = V_{CES}, V_{GE} = 0V$			25	μA
	Note 1, $T_{J} = 125^{\circ}C$			1.5	mA
I _{ges}	$V_{ce} = 0V, V_{ge} = \pm 20V$			±100	nA
V _{CE(sat)}	I _c = 55A, V _{GE} = 15V, Note 2			2.35	V
02(00)	T _J = 125°C		2.20		

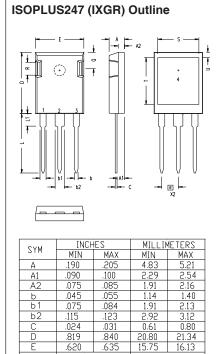
ISOPLUS 247™

G = Gate C = CollectorE = Emitter

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 2500V~ Electrical Isolation
- Anti-Parallel Ultra Fast Diode
- Optimized for Low Conduction Losses

Advantages


- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts
- Inrush Current Protection Circuits

	Ľ	XYS			
Symbol		cteristic			
$(T_{J} = 25^{\circ})$	С, L	Inless Otherwise Specified)	Min.	Тур.	Max.
9 _{fs}		$I_{c} = 55A, V_{cE} = 10V, Note 2$	30	45	S
C _{ies})			4340	pF
C _{oes}	}	$V_{ce} = 25V, V_{ge} = 0V, f = 1 MHz$		300	pF
C _{res}	J			115	pF
Q _{g(on)})			185	nC
\mathbf{Q}_{ge}	}	$I_{_{\rm C}}$ = 55A, $V_{_{\rm GE}}$ = 15V, $V_{_{\rm CE}}$ = 0.5 • $V_{_{\rm CES}}$		25	nC
\mathbf{Q}_{gc}	J			75	nC
t _{d(on)})			23	ns
t _{ri}		Inductive load, T _J = 25°C		42	ns
E _{on}		I _c = 55A, V _{GE} = 15V		5.1	mJ
t _{d(off)}	($V_{ce} = 0.8 \bullet V_{ces}, R_{g} = 3\Omega$		365	ns
t _{fi}		Note 3		282	ns
E _{off}	J			13.3	mJ
t _{d(on)})			24	ns
t _{ri}		Inductive load, T _J = 125°C		46	ns
E _{on}	Ţ	I _c = 55A, V _{GE} = 15V		9.5	mJ
t _{d(off)}		$V_{ce} = 0.8 \bullet V_{ces}, R_{g} = 3\Omega$		618	ns
t _{fi}		Note 3		635	ns
E _{off})			29.0	mJ
R _{thJC}					0.62 °C/W
R _{thCK}				0.15	°C/W

IXGR55N120A3H1

.800 .170

.244 .190 .540 .640 .080

780

.150

.220 .170 .520

.620 .065

5.45

20.

4.32

6.20 4.83

13.72

16.26

2.03

19.81

3.81 5.59

4.32

13.21 15.75 1.65

1 – GATE 2 – DRAIN (COLLECTOR) 3 – SOURCE (EMITTER)

4 - NO CONNÈCTION NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.

е

R

Reverse Diode (FRED)

SymbolTest ConditionsChara $(T_j = 25^{\circ}C, Unless Otherwise Specified)Min.$					Values Max.	
V _F		$I_{_{\rm F}}$ = 60A, $V_{_{ m GE}}$ = 0V, Note 2 $T_{_{ m J}}$ = 150°C		1.85 1.90	2.5	V V
t _{rr}	Ĵ	$I_{_{\rm F}} = 60A, V_{_{\rm GE}} = 0V,$		200		ns
I _{RM}	ſ	$-di_{F}/dt = 350A/\mu s, V_{R} = 600V, T_{J} = 100^{\circ}C$		24.6		А
$\mathbf{R}_{_{\mathrm{thJC}}}$					0.42 °C,	/W

Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, t \leq 300µs, duty cycle, d \leq 2%.
- 3. Switching times & energy losses may increase for higher V_{cF}(Clamp), T_J or R_G.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the	Right to Chan	ae Limits. Test	Conditions.	and Dimensions.

IXYS MOSFETs and IGBTs are covered	4.835.592	4.931.844	5.049.961	5.237.481	6.162.665	6.404.065 B1	6.683.344	6.727.585	7.005.734 B2	7.157.338B2
by one or more of the following U.S. patents:	4,850,072	5,017,508	5,063,307	5,381,025	6,259,123 B1	6,534,343	6,710,405 B2	6,759,692	7,063,975 B2	, - ,
, , , , , , , , , , , , , , , , , , , ,	4,881,106	5,034,796	5,187,117	5,486,715	6,306,728 B1	6,583,505	6,710,463	6,771,478 B2	7,071,537	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.